

CamPyRoS - A 6DOF Rocket Trajectory Simulator

[image: _images/308847422.svg]
 [https://zenodo.org/badge/latestdoi/308847422]CamPyRoS (Cambridge Python Rocketry Simulator) is a Python package which provides fully featured rocket trajectory simulation including features like:

	6 degrees of freedom (3 translational, 3 rotational)

	Monte Carlo stochastic analysis

	Aerodynamic heating model

	Use of live wind data

	Variable mass and moments of inertia models

Getting started

Currently not all dependancies are supported by the same install methods so the easiest install doesn’t contain the full functionality. To install the core library:

	1

	pip install git+https://github.com/cuspaceflight/CamPyRoS.git

The “wind” and “statistics” modules will not run. Statistics has a dependancy not fully supported by windows, to install it:

pip install ray on most platforms, for Windows problems see here [https://docs.ray.io/en/master/installation.html].

Wind depends on a library called iris which can only be installed with conda:

	1

	conda install iris, iris_grib

Note

Note: after some more testing this won’t work for anyone on Windows, I am in the process fo sorting this out (the problem is a codec dependancy which there is no way for us to fix) by writing an library to read the other GFS distrobution method, see getgfs [https://github.com/jagoosw/getgfs]. You can still run and contribute without using the wind module.

This may then demand you install another library when you try to run it:

	1

	pip install eccodes-python

Alternativly you can download this repository and move it to either your system path or somewhere you will exclusivly use it from then:

	1
2

	 conda env create -f enviroment.yml -n <name>
 conda activate <name>

From within the downloaded folder.

Usage

The repository contains some examples you can run:
- example.ipynb or example.py : Launch of a simple rocket (the Martlet 4).
- Stats Model Example.ipynb : Example of how to use the statistics model and stochastic analysis.
- Aerodynamic Heating Example.ipynb : Example of how to run an aerodynamic heating simulation.

Helping out

If you would like to contribute please have a look at the guidelines [https://github.com/cuspaceflight/CamPyRoS/blob/main/CONTRIBUTING.md]

In progress

	GUI: An incomplete (and outdated) GUI has been made using Tkinter, and is in gui.py.

	Slosh modelling: Some slosh modelling functions have been put together in slosh.py, based on the following source - The Dynamic Behavior of Liquids in Moving Containers, with Applications to Space Vehicle Technology [https://ntrs.nasa.gov/citations/19670006555].

	Wind variability: Statistical analysis of historic wind forecasts and obervations are analysed to create a Guassian difference profile to vary the wind in the statistical models (see wind-stats branch for a very poorly documented insight to current progress)

Potential for expansion

	Multistage rockets

	Fin cant, roll damping, and roll acceleration: OpenRocket Technical Documentation [http://openrocket.info/documentation.html]

	CFD coupling: PyFoam [https://openfoamwiki.net/index.php/Contrib/PyFoam], Simulations of 6-DOF Motion with a Cartesian Method [https://pdfs.semanticscholar.org/ace3/5a61803390b0e0b70f6ca34492ad20a03e03.pdf]

	Multiphysics coupling: PRECICE [https://www.precice.org/]

Cite as

Daniel Gibbons, & Jago Strong-Wright. (2021, February 11). cuspaceflight/CamPyRoS: First release! (Version V1.0). Zenodo. http://doi.org/10.5281/zenodo.4535672

References

[1] - Stochastic Six-Degree-of-Freedom Flight Simulator for Passively Controlled High-Power Rockets [https://ascelibrary.org/doi/10.1061/%28ASCE%29AS.1943-5525.0000051]

[2] - Tangent ogive nose aerodynamic heating program: NQLD019 [https://ntrs.nasa.gov/citations/19730063810]

[3] - NASA Basic Considerations for Rocket Trajectory Simulation [https://apps.dtic.mil/sti/pdfs/AD0642855.pdf]

[4] - SIX DEGREE OF FREEDOM DIGITAL SIMULATION MODEL FOR UNGUIDED FIN-STABILIZED ROCKETS [https://apps.dtic.mil/dtic/tr/fulltext/u2/452106.pdf]

[5] - Trajectory Prediction for a Typical Fin Stabilized Artillery Rocket [https://journals.ekb.eg/article_23742_f19c1da1a61e78c1f5bb7ce58a7b30dd.pdf]

[6] - Central Limit Theorem and Sample Size [https://www.umass.edu/remp/Papers/Smith&Wells_NERA06.pdf]

[7] - Monte Carlo Simulations: Number of Iterations and Accuracy [https://apps.dtic.mil/dtic/tr/fulltext/u2/a621501.pdf]

[8] - Method for Calculating Aerodynamic Heating on Sounding Rocket Tangent Ogive Noses [https://arc.aiaa.org/doi/abs/10.2514/3.62081]

[9] - Six degree-of-freedom (6-DOF) Flight Simulation Check-cases [https://nescacademy.nasa.gov/flightsim/]

Technical Documentation

Full technical documentation is coming soon

Content

Contents

	Need help

	Want to help out?

	License

	Contact

Index and moduals

	Index

	Module Index

	Search Page

Need help

If you have any problems with this libray please email js2430@cam.ac.uk or dug20@cam.ac.uk, open an issue [https://github.com/CUSF-Simulation/CamPyRoS/issues] or a discussion [https://github.com/CUSF-Simulation/CamPyRoS/discussions]

Want to help out?

Check out our contribution guidelines [https://github.com/cuspaceflight/CamPyRoS/blob/main/CONTRIBUTING.md]

License

GNU GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for
software and other kinds of works.

The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you
these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:
(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains
that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run
modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.
States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and
modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work
for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

	Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

Contact

Questions? Please contact us at js2430@cam.ac.uk or dug20@cam.ac.uk

 Python Module Index

 c

 		 	

 		
 c	

 	[image: -]
 	
 campyros	

 	
 	
 campyros.aero	

 	
 	
 campyros.constants	

 	
 	
 campyros.main	

 	
 	
 campyros.mass	

 	
 	
 campyros.motor	

 	
 	
 campyros.plot	

 	
 	
 campyros.post	

 	
 	
 campyros.ray_alt	

 	
 	
 campyros.slosh	

 	
 	
 campyros.statistical	

 	
 	
 campyros.tests	

 	
 	
 campyros.transforms	

 	
 	
 campyros.wind	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Y

A

 	
 	abs_stdev() (in module campyros.statistical)

 	add_cylindricalapproximation() (campyros.mass.MassModel method)

 	add_drymass() (campyros.mass.MassModel method)

 	add_hollowcylinder() (campyros.mass.MassModel method)

 	add_liquidtank() (campyros.mass.MassModel method)

 	add_solidfuel() (campyros.mass.MassModel method)

 	aero (campyros.main.Rocket attribute)

 	aero_error (campyros.statistical.StatisticalModel attribute)

 	aero_file (campyros.statistical.StatisticalModel attribute)

 	AeroData (class in campyros.aero)

 	alpha_grid (campyros.aero.AeroData attribute)

 	
 	alt (campyros.main.LaunchSite attribute)

 	(campyros.main.Rocket attribute)

 	alt_poll_interval (campyros.main.Rocket attribute)

 	(campyros.statistical.StatisticalModel attribute)

 	alt_poll_watch (campyros.main.Rocket attribute)

 	alt_poll_watch_interval (campyros.main.Rocket attribute)

 	alt_record (campyros.main.Rocket attribute)

 	ambient_pressure (campyros.motor.Motor attribute)

 	analyse() (in module campyros.statistical)

 	animate_orientation() (in module campyros.plot)

 	atol (campyros.main.Rocket attribute)

B

 	
 	b2i (campyros.main.Rocket attribute)

 	
 	burn_out (campyros.main.Rocket attribute)

C

 	
 	CA() (campyros.aero.AeroData method)

 	CA_grid (campyros.aero.AeroData attribute)

 	
 campyros

 	module

 	
 campyros.aero

 	module

 	
 campyros.constants

 	module

 	
 campyros.main

 	module

 	
 campyros.mass

 	module

 	
 campyros.motor

 	module

 	
 campyros.plot

 	module

 	
 campyros.post

 	module

 	
 campyros.ray_alt

 	module

 	
 	
 campyros.slosh

 	module

 	
 campyros.statistical

 	module

 	
 campyros.tests

 	module

 	
 campyros.transforms

 	module

 	
 campyros.wind

 	module

 	check_phase() (campyros.main.Rocket method)

 	CN() (campyros.aero.AeroData method)

 	CN_grid (campyros.aero.AeroData attribute)

 	cog() (campyros.mass.CylindricalApproximation method)

 	(campyros.mass.LiquidTank method)

 	(campyros.mass.MassModel method)

 	(campyros.mass.SolidFuel method)

 	COP() (campyros.aero.AeroData method)

 	COP_grid (campyros.aero.AeroData attribute)

 	CylindricalApproximation (class in campyros.mass)

 	CylindricalFuelTank (class in campyros.slosh)

D

 	
 	direction_i2l() (in module campyros.transforms)

 	
 	direction_l2i() (in module campyros.transforms)

 	DryMass (class in campyros.mass)

E

 	
 	elipse() (in module campyros.plot)

 	env_vars (campyros.main.Rocket attribute)

 	(campyros.statistical.StatisticalModel attribute)

 	
 	error (campyros.aero.AeroData attribute)

 	exit_area (campyros.motor.Motor attribute)

F

 	
 	fdot() (campyros.main.Rocket method)

 	fix_ypr() (in module campyros.plot)

 	forcast_plus_time (campyros.statistical.StatisticalModel attribute)

 	forcast_time (campyros.statistical.StatisticalModel attribute)

 	
 	from_json() (in module campyros.main)

 	from_lists() (campyros.aero.AeroData static method)

 	from_novus() (campyros.motor.Motor static method)

 	from_rasaero() (campyros.aero.AeroData static method)

G

 	
 	get() (campyros.main.Parachute method)

 	
 	get_velocity_magnitude() (in module campyros.plot)

 	get_wind() (campyros.wind.Wind method)

H

 	
 	h (campyros.main.Rocket attribute)

 	(campyros.statistical.StatisticalModel attribute)

 	
 	HollowCylinder (class in campyros.mass)

I

 	
 	i2airspeed() (in module campyros.transforms)

 	i2b (campyros.main.Rocket attribute)

 	i2lla() (in module campyros.transforms)

 	inertial_position() (in module campyros.plot)

 	ixx() (campyros.mass.CylindricalApproximation method)

 	(campyros.mass.LiquidTank method)

 	(campyros.mass.MassModel method)

 	(campyros.mass.SolidFuel method)

 	
 	iyy() (campyros.mass.CylindricalApproximation method)

 	(campyros.mass.LiquidTank method)

 	(campyros.mass.MassModel method)

 	(campyros.mass.SolidFuel method)

 	izz() (campyros.mass.CylindricalApproximation method)

 	(campyros.mass.LiquidTank method)

 	(campyros.mass.MassModel method)

 	(campyros.mass.SolidFuel method)

L

 	
 	lat (campyros.main.LaunchSite attribute)

 	launch_site (campyros.main.Rocket attribute)

 	launch_site_vars (campyros.statistical.StatisticalModel attribute)

 	LaunchSite (class in campyros.main)

 	lden() (campyros.mass.LiquidTank method)

 	lheight() (campyros.mass.LiquidTank method)

 	
 	LiquidTank (class in campyros.mass)

 	lla2i() (in module campyros.transforms)

 	lmass() (campyros.mass.LiquidTank method)

 	load_motor() (in module campyros.motor)

 	longi (campyros.main.LaunchSite attribute)

 	lvol() (campyros.mass.LiquidTank method)

M

 	
 	Mach_grid (campyros.aero.AeroData attribute)

 	mass() (campyros.mass.CylindricalApproximation method)

 	(campyros.mass.LiquidTank method)

 	(campyros.mass.MassModel method)

 	(campyros.mass.SolidFuel method)

 	mass_model (campyros.main.Rocket attribute)

 	mass_model_vars (campyros.statistical.StatisticalModel attribute)

 	MassModel (class in campyros.mass)

 	
 module

 	campyros

 	campyros.aero

 	campyros.constants

 	campyros.main

 	campyros.mass

 	campyros.motor

 	campyros.plot

 	campyros.post

 	campyros.ray_alt

 	campyros.slosh

 	campyros.statistical

 	campyros.tests

 	campyros.transforms

 	campyros.wind

 	
 	motor (campyros.main.Rocket attribute)

 	Motor (class in campyros.motor)

 	motor_base (campyros.statistical.StatisticalModel attribute)

O

 	
 	on_rail (campyros.main.Rocket attribute)

P

 	
 	parachute (campyros.main.Rocket attribute)

 	Parachute (class in campyros.main)

 	parachute_vars (campyros.statistical.StatisticalModel attribute)

 	pendulum_analogy() (campyros.slosh.CylindricalFuelTank method)

 	pitch_damping_coefficient (campyros.aero.AeroData attribute)

 	pitch_damping_coefficient() (in module campyros.aero)

 	plot_aero() (in module campyros.plot)

 	plot_altitude_time() (in module campyros.plot)

 	
 	plot_launch_trajectory_3d() (in module campyros.plot)

 	plot_mass() (in module campyros.plot)

 	plot_thrust() (in module campyros.plot)

 	plot_ypr() (in module campyros.plot)

 	pos (campyros.motor.Motor attribute)

 	pos_i (campyros.main.Rocket attribute)

 	pos_i2alt() (in module campyros.transforms)

 	pos_i2l() (in module campyros.transforms)

 	pos_l2i() (in module campyros.transforms)

R

 	
 	r_in() (campyros.mass.SolidFuel method)

 	rail_length (campyros.main.LaunchSite attribute)

 	rail_pitch (campyros.main.LaunchSite attribute)

 	rail_yaw (campyros.main.LaunchSite attribute)

 	ref_area (campyros.aero.AeroData attribute)

 	remote (class in campyros.ray_alt)

 	
 	Rocket (class in campyros.main)

 	roll_damping_coefficient (campyros.aero.AeroData attribute)

 	rtol (campyros.main.Rocket attribute)

 	run() (campyros.main.Rocket method)

 	run_date (campyros.statistical.StatisticalModel attribute)

 	run_itteration (campyros.statistical.StatisticalModel attribute)

 	run_model() (campyros.statistical.StatisticalModel method)

S

 	
 	set_axes_equal_3d() (in module campyros.plot)

 	show_plot() (campyros.aero.AeroData method)

 	SolidFuel (class in campyros.mass)

 	spring_analogy() (campyros.slosh.CylindricalFuelTank method)

 	
 	StatisticalModel (class in campyros.statistical)

 	stats_alt() (in module campyros.plot)

 	stats_apogee() (in module campyros.plot)

 	stats_landing() (in module campyros.plot)

 	stats_trajectories() (in module campyros.plot)

T

 	
 	thrust() (campyros.motor.Motor method)

 	thrust_alignment (campyros.statistical.StatisticalModel attribute)

 	thrust_array (campyros.motor.Motor attribute)

 	thrust_error (campyros.statistical.StatisticalModel attribute)

 	
 	thrust_vector (campyros.main.Rocket attribute)

 	time (campyros.main.Rocket attribute)

 	time_array (campyros.motor.Motor attribute)

 	type_name (campyros.statistical.StatisticalModel attribute)

V

 	
 	variable (campyros.main.Rocket attribute)

 	variable_name() (in module campyros.statistical)

 	variable_time (campyros.statistical.StatisticalModel attribute)

 	vden() (campyros.mass.LiquidTank method)

 	vel_i (campyros.main.Rocket attribute)

 	
 	vel_i2l() (in module campyros.transforms)

 	vel_l2i() (in module campyros.transforms)

 	vheight() (campyros.mass.LiquidTank method)

 	vmass() (campyros.mass.LiquidTank method)

 	vvol() (campyros.mass.LiquidTank method)

W

 	
 	w_b (campyros.main.Rocket attribute)

 	w_pendulum() (campyros.slosh.CylindricalFuelTank method)

 	w_spring() (campyros.slosh.CylindricalFuelTank method)

 	
 	warning_on_one_line() (in module campyros.main)

 	wind (campyros.main.LaunchSite attribute)

 	Wind (class in campyros.wind)

 	wind_base (campyros.statistical.StatisticalModel attribute)

Y

 	
 	ypr_i() (in module campyros.post)

campyros package

Subpackages

	campyros.tests package
	Submodules

	campyros.tests.test module

	Module contents

Submodules

campyros.aero module

	
class campyros.aero.AeroData(CA_grid, CN_grid, COP_grid, Mach_grid, alpha_grid, ref_area, pitch_damping_coefficient=0.0, roll_damping_coefficient=0.0, error={'CA': 1.0, 'CN': 1.0, 'COP': 1.0})

	Bases: object

Object holding aerodynamic data for the rocket.

Assumes an axially symmetric body. Uses scipy.interpolate.interp2d to interpolate data from arrays.

	Parameters

	
	CA_grid (array, 2D) – Axial force coefficient data.

	CN_grid (array, 2D) – Normal force coefficient data.

	COP_grid (array, 2D) – Centre of pressure data (m), containing distances between the nose tip and the centre of pressure.

	Mach_grid (array, 1D or 2D) – Mach number data.

	alpha_grid (array, 1D or 2D) – Angle of attack data (radians).

	ref_area (float) – Referance area used to normalise coefficients (m^2).

	pitch_damping_coefficient (float, optional) – Pitch damping coefficient, defined by moment = C * ρ * ω^2. Defaults to zero.

	roll_damping_coefficient (float, optional) – Roll damping coefficient, defined by moment = C * ρ * ω^2. Defaults to zero.

	error (dictionary, optional) – Used for running stochastic analyses. Defaults to {“CA”:1.0,”CN”:1.0,”COP”:1.0}.

	
CA_grid

	Axial force coefficient data.

	Type

	array

	
CN_grid

	Normal force coefficient data.

	Type

	array

	
COP_grid

	Centre of pressure data, containing distances between the nose tip and the centre of pressure (m).

	Type

	array

	
Mach_grid

	Mach number data.

	Type

	array

	
alpha_grid

	Angle of attack data (rad).

	Type

	array

	
ref_area

	Reference area used to normalise coefficients (m^2).

	Type

	float

	
pitch_damping_coefficient

	Pitch damping coefficient, defined by moment = C * ρ * ω^2.

	Type

	float

	
roll_damping_coefficient

	Roll damping coefficient, defined by moment = C * ρ * ω^2.

	Type

	float

	
error

	Used for running stochastic analyses.

	Type

	dictionary

	
CA(Mach, alpha)

	

	
CN(Mach, alpha)

	

	
COP(Mach, alpha)

	

	
static from_lists(CA_list, CN_list, COP_list, Mach_list, alpha_list, ref_area, pitch_damping_coefficient=0, roll_damping_coefficient=0, error={'CA': 1.0, 'CN': 1.0, 'COP': 1.0})

	Takes in 1D lists of data, and converts them into 2D arrays so they can be used for 2D interpolation.

	Parameters

	
	CA_list (array, 1D) – List of CA data at each Mach and alpha.

	CN_list (array, 1D) – List of CN data at each Mach and alpha

	COP_list (array, 1D) – List of COP data (m) at each mach and alph.

	Mach_list (array, 1D) – List of Mach numbers for each data point.

	alpha_list (array, 1D) – List of angles of attack (rad) for each data point.

	ref_area (array, 1D) – Reference area used to normalise coefficients (m^2).

	pitch_damping_coefficient (int, optional) – Pitch damping coefficient, defined by moment = C * ρ * ω^2. Defaults to 0.

	roll_damping_coefficient (int, optional) – Roll damping coefficient, defined by moment = C * ρ * ω^2. Defaults to 0.

	error (dict, optional) – Used for running stochastic analyses. Defaults to {“CA”:1.0,”CN”:1.0,”COP”:1.0}.

	Returns

	AeroData object.

	Return type

	AeroData

	
static from_rasaero(csv_directory, ref_area, pitch_damping_coefficient=0, roll_damping_coefficient=0, error={'CA': 1.0, 'CN': 1.0, 'COP': 1.0})

	Convert an aerodynamic data .CSV file from RASAero II into an AeroData object.

	Parameters

	
	csv_directory (string) – Directory to .CSV file.

	ref_area (float) – Referance area used to normalise coefficients (m^2).

	pitch_damping_coefficient (float, optional) – Pitch damping coefficient, defined by moment = C * ρ * ω^2. Defaults to zero.

	roll_damping_coefficient (float, optional) – Roll damping coefficient, defined by moment = C * ρ * ω^2. Defaults to zero.

	error (dictionary, optional) – Used for running stochastic analyses.

	Returns

	AeroData object.

	Return type

	AeroData

	
show_plot(Mach=array([0.0, 0.0501002, 0.1002004, 0.1503006, 0.2004008, 0.250501, 0.3006012, 0.3507014, 0.4008016, 0.4509018, 0.501002, 0.5511022, 0.6012024, 0.65130261, 0.70140281, 0.75150301, 0.80160321, 0.85170341, 0.90180361, 0.95190381, 1.00200401, 1.05210421, 1.10220441, 1.15230461, 1.20240481, 1.25250501, 1.30260521, 1.35270541, 1.40280561, 1.45290581, 1.50300601, 1.55310621, 1.60320641, 1.65330661, 1.70340681, 1.75350701, 1.80360721, 1.85370741, 1.90380762, 1.95390782, 2.00400802, 2.05410822, 2.10420842, 2.15430862, 2.20440882, 2.25450902, 2.30460922, 2.35470942, 2.40480962, 2.45490982, 2.50501002, 2.55511022, 2.60521042, 2.65531062, 2.70541082, 2.75551102, 2.80561122, 2.85571142, 2.90581162, 2.95591182, 3.00601202, 3.05611222, 3.10621242, 3.15631263, 3.20641283, 3.25651303, 3.30661323, 3.35671343, 3.40681363, 3.45691383, 3.50701403, 3.55711423, 3.60721443, 3.65731463, 3.70741483, 3.75751503, 3.80761523, 3.85771543, 3.90781563, 3.95791583, 4.00801603, 4.05811623, 4.10821643, 4.15831663, 4.20841683, 4.25851703, 4.30861723, 4.35871743, 4.40881764, 4.45891784, 4.50901804, 4.55911824, 4.60921844, 4.65931864, 4.70941884, 4.75951904, 4.80961924, 4.85971944, 4.90981964, 4.95991984, 5.01002004, 5.06012024, 5.11022044, 5.16032064, 5.21042084, 5.26052104, 5.31062124, 5.36072144, 5.41082164, 5.46092184, 5.51102204, 5.56112224, 5.61122244, 5.66132265, 5.71142285, 5.76152305, 5.81162325, 5.86172345, 5.91182365, 5.96192385, 6.01202405, 6.06212425, 6.11222445, 6.16232465, 6.21242485, 6.26252505, 6.31262525, 6.36272545, 6.41282565, 6.46292585, 6.51302605, 6.56312625, 6.61322645, 6.66332665, 6.71342685, 6.76352705, 6.81362725, 6.86372745, 6.91382766, 6.96392786, 7.01402806, 7.06412826, 7.11422846, 7.16432866, 7.21442886, 7.26452906, 7.31462926, 7.36472946, 7.41482966, 7.46492986, 7.51503006, 7.56513026, 7.61523046, 7.66533066, 7.71543086, 7.76553106, 7.81563126, 7.86573146, 7.91583166, 7.96593186, 8.01603206, 8.06613226, 8.11623246, 8.16633267, 8.21643287, 8.26653307, 8.31663327, 8.36673347, 8.41683367, 8.46693387, 8.51703407, 8.56713427, 8.61723447, 8.66733467, 8.71743487, 8.76753507, 8.81763527, 8.86773547, 8.91783567, 8.96793587, 9.01803607, 9.06813627, 9.11823647, 9.16833667, 9.21843687, 9.26853707, 9.31863727, 9.36873747, 9.41883768, 9.46893788, 9.51903808, 9.56913828, 9.61923848, 9.66933868, 9.71943888, 9.76953908, 9.81963928, 9.86973948, 9.91983968, 9.96993988, 10.02004008, 10.07014028, 10.12024048, 10.17034068, 10.22044088, 10.27054108, 10.32064128, 10.37074148, 10.42084168, 10.47094188, 10.52104208, 10.57114228, 10.62124248, 10.67134269, 10.72144289, 10.77154309, 10.82164329, 10.87174349, 10.92184369, 10.97194389, 11.02204409, 11.07214429, 11.12224449, 11.17234469, 11.22244489, 11.27254509, 11.32264529, 11.37274549, 11.42284569, 11.47294589, 11.52304609, 11.57314629, 11.62324649, 11.67334669, 11.72344689, 11.77354709, 11.82364729, 11.87374749, 11.9238477, 11.9739479, 12.0240481, 12.0741483, 12.1242485, 12.1743487, 12.2244489, 12.2745491, 12.3246493, 12.3747495, 12.4248497, 12.4749499, 12.5250501, 12.5751503, 12.6252505, 12.6753507, 12.7254509, 12.7755511, 12.8256513, 12.8757515, 12.9258517, 12.9759519, 13.0260521, 13.0761523, 13.12625251, 13.17635271, 13.22645291, 13.27655311, 13.32665331, 13.37675351, 13.42685371, 13.47695391, 13.52705411, 13.57715431, 13.62725451, 13.67735471, 13.72745491, 13.77755511, 13.82765531, 13.87775551, 13.92785571, 13.97795591, 14.02805611, 14.07815631, 14.12825651, 14.17835671, 14.22845691, 14.27855711, 14.32865731, 14.37875752, 14.42885772, 14.47895792, 14.52905812, 14.57915832, 14.62925852, 14.67935872, 14.72945892, 14.77955912, 14.82965932, 14.87975952, 14.92985972, 14.97995992, 15.03006012, 15.08016032, 15.13026052, 15.18036072, 15.23046092, 15.28056112, 15.33066132, 15.38076152, 15.43086172, 15.48096192, 15.53106212, 15.58116232, 15.63126253, 15.68136273, 15.73146293, 15.78156313, 15.83166333, 15.88176353, 15.93186373, 15.98196393, 16.03206413, 16.08216433, 16.13226453, 16.18236473, 16.23246493, 16.28256513, 16.33266533, 16.38276553, 16.43286573, 16.48296593, 16.53306613, 16.58316633, 16.63326653, 16.68336673, 16.73346693, 16.78356713, 16.83366733, 16.88376754, 16.93386774, 16.98396794, 17.03406814, 17.08416834, 17.13426854, 17.18436874, 17.23446894, 17.28456914, 17.33466934, 17.38476954, 17.43486974, 17.48496994, 17.53507014, 17.58517034, 17.63527054, 17.68537074, 17.73547094, 17.78557114, 17.83567134, 17.88577154, 17.93587174, 17.98597194, 18.03607214, 18.08617234, 18.13627255, 18.18637275, 18.23647295, 18.28657315, 18.33667335, 18.38677355, 18.43687375, 18.48697395, 18.53707415, 18.58717435, 18.63727455, 18.68737475, 18.73747495, 18.78757515, 18.83767535, 18.88777555, 18.93787575, 18.98797595, 19.03807615, 19.08817635, 19.13827655, 19.18837675, 19.23847695, 19.28857715, 19.33867735, 19.38877756, 19.43887776, 19.48897796, 19.53907816, 19.58917836, 19.63927856, 19.68937876, 19.73947896, 19.78957916, 19.83967936, 19.88977956, 19.93987976, 19.98997996, 20.04008016, 20.09018036, 20.14028056, 20.19038076, 20.24048096, 20.29058116, 20.34068136, 20.39078156, 20.44088176, 20.49098196, 20.54108216, 20.59118236, 20.64128257, 20.69138277, 20.74148297, 20.79158317, 20.84168337, 20.89178357, 20.94188377, 20.99198397, 21.04208417, 21.09218437, 21.14228457, 21.19238477, 21.24248497, 21.29258517, 21.34268537, 21.39278557, 21.44288577, 21.49298597, 21.54308617, 21.59318637, 21.64328657, 21.69338677, 21.74348697, 21.79358717, 21.84368737, 21.89378758, 21.94388778, 21.99398798, 22.04408818, 22.09418838, 22.14428858, 22.19438878, 22.24448898, 22.29458918, 22.34468938, 22.39478958, 22.44488978, 22.49498998, 22.54509018, 22.59519038, 22.64529058, 22.69539078, 22.74549098, 22.79559118, 22.84569138, 22.89579158, 22.94589178, 22.99599198, 23.04609218, 23.09619238, 23.14629259, 23.19639279, 23.24649299, 23.29659319, 23.34669339, 23.39679359, 23.44689379, 23.49699399, 23.54709419, 23.59719439, 23.64729459, 23.69739479, 23.74749499, 23.79759519, 23.84769539, 23.89779559, 23.94789579, 23.99799599, 24.04809619, 24.09819639, 24.14829659, 24.19839679, 24.24849699, 24.29859719, 24.34869739, 24.3987976, 24.4488978, 24.498998, 24.5490982, 24.5991984, 24.6492986, 24.6993988, 24.749499, 24.7995992, 24.8496994, 24.8997996, 24.9498998, 25.0]), alpha=array([0.0, 0.01745329, 0.03490659, 0.05235988, 0.06981317]))

	“Shows plots of the CA, CN and COP functions, so you can visually check if the system has interpreted your data correctly.

	Parameters

	
	Mach (array) – Array of Mach numbers to plot over. Defaults to np.linspace(0, 25, 500).

	alpha (array) – Array of angles of attack to plot over (rad). Defaults to np.linspace(0, 4, 5)*np.pi/180.

	
campyros.aero.pitch_damping_coefficient(length, radius, fin_number, area_per_fin)

	Gives approximate values for the pitch damping coefficient. Uses equations (3.59) and (3.60) from the OpenRocket documentation.

Note

	In this model we define the pitch damping coefficient as:
	m = C * ρ * ω^2

	Where:
	m = moment
ρ = free-stream density
ω = pitch rate
C = pitch damping coefficient.

Assumptions:
- Fins are at the very bottom of the rocket
- COG of the rocket is half way up the length

	Parameters

	
	length (float) – Length of the rocket (m)

	radius (float) – Radius of the rocket (assuming it’s a cylinder) (m)

	fin_number (int) – Number of fins on the rocket

	area_per_fin (float) – Area of a single fin (m^2)

	Returns

	

	Return type

	Pitch damping cofficient

campyros.constants module

Earth constants

campyros.gui module

campyros.heating module

campyros.main module

Contains the classes and functions for the core trajectory simulation. SI units unless stated otherwise.
.. rubric:: Notes

Known issues:
- Unsure about the use of “dx” in “scipy.misc.derivative(self.mass_model.mass, time, dx=1)” when calculating mdot
- Possible inconsistency in the definition of the launch site coordinate system, and whether the origin is at alt=0 or alt=launch_site.alt. I haven’t thoroughly checked for this inconsistency yet.
Coordinate systems:
- Body (x_b, y_b, z_b)

	Origin on rocket

	Rotates with the rocket.

	y points east and z north at take off (before rail alignment is accounted for) x up.

	x is along the “long” axis of the rocket.

	
	Launch site (x_l, y_l, z_l):
	
	Origin has the launch site’s longitude and latitude, but is at altitude = 0.

	Rotates with the Earth.

	z points up (normal to the surface of the Earth).

	y points East (tangentially to the surface of the Earth).

	x points South (tangentially to the surface of the Earth).

	
	Inertial (x_i, y_i, z_i):
	
	Origin at centre of the Earth.

	Does not rotate.

	z points to North from the centre of Earth.

	x aligned with launch site at start .

	y defined from x and z (so it is a right hand coordinate system).

	
class campyros.main.LaunchSite(rail_length, rail_yaw, rail_pitch, alt, longi, lat, variable_wind=True, default_wind=[0, 0, 0], launch_datetime='20210428 00:00', cache_Wind=False)

	Bases: object

Object for holding launch site information.
:param rail_length: Length of the launch rail (m)
:type rail_length: float
:param rail_yaw: Yaw angle of the launch rail (deg), using a right-hand rotation rule out the launch frame z-axis. “rail_yaw = 0” points South, “rail_yaw = 90” points East.
:type rail_yaw: float
:param rail_pitch: Pitch angle of the launch rail (deg). “rail_pitch = 0” points up.
:type rail_pitch: float
:param alt: Launch site altitude (m)
:type alt: float
:param longi: Launch site longitude (deg)
:type longi: float
:param lat: Launch site latitude (deg)
:type lat: float
:param variable_wind: Whether to use real wind data or not. If True, wind data will be downloaded before use. Defaults to True.
:type variable_wind: bool, optional
:param default_wind: Wind vector to use if ‘variable_wind = False’, [x_l, y_l, z_l] (m/s). Defaults to [0,0,0].
:type default_wind: array, optional
:param wind_data_loc: Directory to store wind data files in. Defaults to “data/wind/gfs”.
:type wind_data_loc: str, optional
:param run_date: Date to collect real wind data for, in the format “YYYYMMDD”. Defaults to the current date.
:type run_date: str, optional
:param forcast_time: Forcast run time, must be “00”, “06”, “12” or “18”. Defaults to “00”.
:type forcast_time: str, optional
:param forcast_plus_time: Hours forcast forward from forcast time, must be three digits between 000 and 123 (?). Defaults to “000”.
:type forcast_plus_time: str, optional
:param fast_wind: ???. Defaults to False.
:type fast_wind: bool, optional

	
rail_length

	Length of the launch rail (m)

	Type

	float

	
rail_yaw

	Yaw angle of the launch rail (deg), using a right-hand rotation rule out the launch frame z-axis. “rail_yaw = 0” points South, “rail_yaw = 90” points East.

	Type

	float

	
rail_pitch

	Pitch angle of the launch rail (deg). “rail_pitch = 0” points up.

	Type

	float

	
alt

	Launch site altitude (m)

	Type

	float

	
longi

	Launch site longitude (deg)

	Type

	float

	
lat

	Launch site latitude (deg)

	Type

	float

	
wind

	Wind object containing wind data.

	Type

	Wind

	
class campyros.main.Parachute(main_s, main_c_d, drogue_s, drogue_c_d, main_alt, attach_distance=0.0)

	Bases: object

	
get(alt, mach)

	Returns the drag coefficient and area of the parachute, given the current altitude and Mach Number.
I.e., it checks if the main or drogue parachute is open, and returns the relevant values.
:param alt: Current altitude (m)
:type alt: float
:param mach: Mach number
:type mach: float

	Returns

	Drag coefficient, parachute area (m^2)

	Return type

	float, float

	
class campyros.main.Rocket(mass_model, motor, aero, launch_site, h=0.01, variable=True, rtol=1e-07, atol=1e-14, parachute=<campyros.main.Parachute object>, alt_poll_interval=1, thrust_vector=array([1, 0, 0]), errors={'density': 1.0, 'gravity': 1.0, 'pressure': 1.0, 'speed_of_sound': 1.0})

	Bases: object

Rocket object to contain rocket data and run rocketry simulations.
:param mass_model: MassModel object containing all the data on mass and moments of inertia.
:type mass_model: MassModel
:param motor: Motor object containing information on the rocket engine.
:type motor: Motor
:param aero: AeroData object containg data on aerodynamic coefficients and the centre of pressure.
:type aero: AeroData
:param launch_site: LaunchSite object contaning launch site and wind information.
:type launch_site: LaunchSite
:param h: Integration time step (if using a fixed time step by setting “variable = False”). Defaults to 0.01.
:type h: float, optional
:param variable: If True, a variable time step is use for the integration. If “False” then the input for “h” is used as the time step. Defaults to True.
:type variable: bool, optional
:param rtol: Relative error tolerance for integration. Defaults to 1e-7.
:type rtol: float, optional
:param atol: Absolute error tolerance for integration. Defaults to 1e-14.
:type atol: float, optional
:param parachute: Parachute object, containing parachute data. Defaults to Parachute(0,0,0,0,0,0).
:type parachute: Parachute, optional
:param alt_poll_interval: How often to check for parachute opening. Defaults to 1.
:type alt_poll_interval: int, optional
:param thrust_vector: Direction of thrust in body coordinates. Defaults to np.array([1,0,0]).
:type thrust_vector: array, optional
:param errors: Multiplication factors for the gravity, pressure, density and speed of sound. Used in the statistics model. Defaults to {“gravity”:1.0,”pressure”:1.0,”density”:1.0,”speed_of_sound”:1.0}.
:type errors: dict, optional

	
mass_model

	MassModel object containing all the data on mass and moments of inertia.

	Type

	MassModel

	
motor

	Motor object containing information on the rocket engine.

	Type

	Motor

	
aero

	AeroData object containg data on aerodynamic coefficients and the centre of pressure.

	Type

	AeroData

	
launch_site

	LaunchSite object contaning launch site and wind information.

	Type

	LaunchSite

	
h

	Integration time step (if using a fixed time step by setting “variable = False”).

	Type

	float

	
variable

	If True, a variable time step is use for the integration. If “False” then the input for “h” is used as the time step.

	Type

	bool

	
rtol

	Relative error tolerance for integration.

	Type

	float

	
atol

	Absolute error tolerance for integration.

	Type

	float

	
parachute

	Parachute object, containing parachute data.

	Type

	Parachute

	
alt_poll_interval

	???. Defaults to 1.

	Type

	int

	
thrust_vector

	Direction of thrust in body coordinates.

	Type

	array

	
env_vars

	Multiplication factors for the gravity, pressure, density and speed of sound. Used in the statistics model.

	Type

	dict

	
time

	Time since engine ignition (s).

	Type

	array

	
pos_i

	Position in inertial coordinates [x_i, y_i, z_i] (m).

	Type

	array

	
vel_i

	Velocity in inertial coordinates [x_i, y_i, z_i] (m/s).

	Type

	array

	
w_b

	Angular velocity in body coordiates [x_b, y_b, z_b] (rad/s).

	Type

	array

	
b2i

	Body-to-inertial coordinate rotation matrix.

	Type

	scipy.spatial.transform.Rotation

	
i2b

	Inertial-to-body coordinate rotation matrix.

	Type

	scipy.spatial.transform.Rotation

	
alt

	Rocket altitude (m).

	Type

	float

	
on_rail

	True if the rocket is still on the rail, False if the rocket is off the rail.

	Type

	bool

	
burn_out

	False if engine is still firing, True if the engine has finished firing.

	Type

	bool

	
alt_record

	“Current” altitude of the rocket used to check for parahute opening.

	Type

	float

	
alt_poll_watch_interval

	How often to check if the parachute needs to be openes (s).

	Type

	float

	
alt_poll_watch

	Last polled time.

	Type

	float

	
check_phase(debug=False)

	Check what phase of flight the rocket is in, e.g. on the rail, off the rail, or with the parachute open.
.. rubric:: Notes

	Since this only checks after each time step, there may be a very short period where the rocket is orientated as if it is still on the rail, when it shouldn’t be.

	For this reason, it may look like the rocket leaves the rail at an altitude greater than the rail length.

	Parameters

	debug (bool, optional) – If True, a message is printed when the rocket leaves the rail. Defaults to False.

	Returns

	List of events that happened in this step, for the data log.

	Return type

	list

	
fdot(time, fn)

	Returns the rate of change of the rocket’s state array, ‘fn’.
:param time: Time since ignition (s).
:type time: float
:param fn: Rocket’s current state, [pos_i[0], pos_i[1], pos_i[2], vel_i[0], vel_i[1], vel_i[2], w_b[0], w_b[1], w_b[2], xb_i[0], xb_i[1], xb_i[2], yb_i[0], yb_i[1], yb_i[2], zb_i[0],zb_i[1],zb_i[2]]
:type fn: array

	Returns

	Rate of change of fdot, i.e. [vel_i[0], vel_i[1], vel_i[2], acc_i[0], acc_i[1], acc_i[2], wdot_b[0], wdot_b[1], wdot_b[2], xbdot[0], xbdot[1], xbdot[2], ybdot[0], ybdot[1], ybdot[2], zbdot[0], zbdot[1], zbdot[2]]

	Return type

	array

	
run(max_time=1000, debug=False, to_json=False)

	Runs the rocket trajectory simulation. Uses the SciPy DOP853 O(h^8) integrator.
:param max_time: Maximum time to run the simulation for (s). Defaults to 1000.
:type max_time: float, optional
:param debug: If True, data will be printed to the console to aid with debugging. Defaults to False.
:type debug: bool, optional
:param to_json: Directory to export a .json file to, containing the results of the simulation. If False, no .json file will be produced. Defaults to False.
:type to_json: str, optional

	Returns

	
	pandas DataFrame containing the fundamental trajectory results. Most information can be derived from this in post processing.
	”time” (array): List of times that all the data corresponds to (s).
“pos_i” (array): List of position vectors in inertial coordinates [x_i, y_i, z_i] (m).
“vel_i” (array): List of velocity vectors in inertial coordinates [x_i, y_i, z_i] (m/s).
“b2imat” (array): List of rotation matrices for going from the body to inertial coordinate system (i.e. a record of rocket orientation).
“w_b” (array): List of angular velocity vectors, in body coordinates [x_b, y_b, z_b] (rad/s).
“events” (array): List of useful events.

	Return type

	pandas.DataFrame

	
campyros.main.from_json(directory)

	Extract trajectory data from a .json file produced by campyros.Rocket.run(), and convert it into a pandas DataFrame.
:param directory: .json file directory.
:type directory: str

	Returns

	
	pandas DataFrame containing the fundamental trajectory results. Most information can be derived from this in post processing.
	”time” (array): List of times that all the data corresponds to (s).
“pos_i” (array): List of position vectors in inertial coordinates [x_i, y_i, z_i] (m).
“vel_i” (array): List of velocity vectors in inertial coordinates [x_i, y_i, z_i] (m/s).
“b2imat” (array): List of rotation matrices for going from the body to inertial coordinate system (i.e. a record of rocket orientation).
“w_b” (array): List of angular velocity vectors, in body coordinates [x_b, y_b, z_b] (rad/s).
“events” (array): List of useful events.

	Return type

	pandas.DataFrame

	
campyros.main.warning_on_one_line(message, category, filename, lineno, file=None, line=None)

	A one line warning format
:param message: [description]
:type message: [type]
:param category: [description]
:type category: [type]
:param filename: [description]
:type filename: [type]
:param lineno: [description]
:type lineno: [type]
:param file: [description]. Defaults to None.
:type file: [type], optional
:param line: [description]. Defaults to None.
:type line: [type], optional

	Returns

	[description]

	Return type

	[type]

campyros.mass module

Notes

	All “positions” are relative to the tip of the rocket’s nose

	All “times” are from the moment of ignition

	
class campyros.mass.CylindricalApproximation(mass_array, time_array, r, l)

	Bases: object

Solid cylinder approxiation for the rocket.

Notes

Assumes:
- The entire rocket is a solid cylinder. It’s volume is constant, but it’s density decreases with time according to how the mass decreases as fuel is burnt.

	
cog(time)

	

	
ixx(time)

	

	
iyy(time)

	

	
izz(time)

	

	
mass(time)

	

	
class campyros.mass.DryMass(mass, ixx, iyy, izz, cog)

	Bases: object

Class for adding custom dry mass values.

	
class campyros.mass.HollowCylinder(mass, r_out, r_in, l, cog)

	Bases: object

Class for getting moment of inertia properties for a solid hollow cylinder that does not vary with time.

	
class campyros.mass.LiquidTank(lmass_array, lden_array, time_array, r, pos_bottom, vmass_array=None, vden_array=None)

	Bases: object

Liquid fuel tank.

Notes

Assumes:
- Cylindrical fuel tank
- Inviscid liquid, so the liquid does not contribute to ixx
- Vapour does not contribute to moments of inertia

	
cog(time)

	

	
ixx(time)

	

	
iyy(time)

	

	
izz(time)

	

	
lden(time)

	

	
lheight(time)

	

	
lmass(time)

	

	
lvol(time)

	

	
mass(time)

	

	
vden(time)

	

	
vheight(time)

	

	
vmass(time)

	

	
vvol(time)

	

	
class campyros.mass.MassModel

	Bases: object

Notes

Assumes:
- All centres of mass lie on the x-x axis.

	
add_cylindricalapproximation(mass_array, time_array, r, l)

	

	
add_drymass(mass, ixx, iyy, izz, cog)

	

	
add_hollowcylinder(mass, r_out, r_in, l, cog)

	

	
add_liquidtank(lmass_array, lden_array, time_array, r, pos_bottom, vmass_array=None, vden_array=None)

	

	
add_solidfuel(mass_array, time_array, den, r_out, l, pos_bottom)

	

	
cog(time)

	

	
ixx(time)

	

	
iyy(time)

	

	
izz(time)

	

	
mass(time)

	

	
class campyros.mass.SolidFuel(mass_array, time_array, den, r_out, l, pos_bottom)

	Bases: object

Solid fuel grain.

Notes

Assumes:
- Fuel grain is shaped like an annular cylinder
- Burning the fuel simply increases the inner radius of the cylinder, uniformly

	
cog(time)

	

	
ixx(time)

	

	
iyy(time)

	

	
izz(time)

	

	
mass(time)

	

	
r_in(time)

	

campyros.motor module

	
class campyros.motor.Motor(thrust_array, time_array, exit_area, pos, ambient_pressure=100000.0)

	Bases: object

Object for holding rocket engine data.

Assumes constant nozzle exit area.

	Parameters

	
	thrust_array (list) – Thrust data (N).

	time_array (list) – Times corresponding to thrust_array data points (s).

	exit_area (float) – Nozzle exit area (m^2).

	pos (float) – Distance between the nose tip and the point at which the thrust acts (m).

	ambient_pressure (float, optional) – Ambient pressure used to obtain the thrust_array data (Pa). Defaults to 1e5.

	
thrust_array

	Thrust data (N).

	Type

	list

	
time_array

	Times corresponding to thrust_array data points (s).

	Type

	list

	
exit_area

	Nozzle exit area (m^2).

	Type

	float

	
pos

	Distance between the nose tip and the point at which the thrust acts (m).

	Type

	float

	
ambient_pressure

	Ambient pressure used to obtain the thrust_array data (Pa).

	Type

	float, optional

	
static from_novus(csv_directory, pos)

	Generate Motor object from a novus_sim_6 output csv file. Modified from Joe Hunt’s NOVUS simulator.

	Parameters

	
	csv_directory (string) – Directory of the .CSV file.

	pos (float) – Distance between the nose tip and the point at which the thrust acts (m).

	Returns

	The Motor object.

	Return type

	Motor

	
thrust(time)

	Function for calculating the thrust at a given time, with an ambient pressure of self.ambient_pressure.

	Parameters

	time (float) – Time since ignition (s).

	Returns

	Thrust (N).

	Return type

	float

	
campyros.motor.load_motor(file)

	Legacy requirment for statistical models

	Parameters

	file (string) – Location of novus output file

	Returns

	
	Motor data - “motor_time”,”prop_mass”,
	”cham_pres”,”throat”,”gamma”, “nozzle_efficiency”,
“exit_pres”,”area_ratio”,”vmass”,”lden”,”lmass”,
“fuel_mass”,”density_fuel”,”dia_fuel”,”length_port”

	Return type

	dict

campyros.plot module

6DOF Trajectory Simulator

Various useful plots of the outputted data

	
campyros.plot.animate_orientation(simulation_output, frames=500)

	Shows an animation of the orientation against time, alongside an animation of altitude against time for reference

	Parameters

	simulation_output (pandas array) – Simulation output from a Rocket.run() method. Should contain the following data:

	
campyros.plot.elipse(u, v, a, b, c)

	

	
campyros.plot.fix_ypr(point)

	

	
campyros.plot.get_velocity_magnitude(df)

	

	
campyros.plot.inertial_position(simulation_output)

	

	
campyros.plot.plot_aero(simulation_output, rocket)

	Plots the following:
- Aerodynamic forces against time
- COG and COP against time
- Angles of attack against time

	Parameters

	
	simulation_output (pandas array) – Simulation output from a Rocket.run() method. Should contain the following data:

	rocket (trajectory.Rocket object) – The rocket object that was used to produce the simulation data. Is needed to calculate coordinate system changes.

	
campyros.plot.plot_altitude_time(simulation_output, rocket)

	Plots the following, against time where applicable: ground track, altitude, speed (in the launch frame) and vertical velocity (in the launch frame)

	Parameters

	
	simulation_output (pandas array) – Simulation output from a Rocket.run() method. Should contain the following data:

	rocket (trajectory.Rocket object) – The rocket object that was used to produce the simulation data. Is needed to calculate coordinate system changes.

	
campyros.plot.plot_launch_trajectory_3d(simulation_output, rocket, show_orientation=False, arrow_frequency=0.02)

	Plots the trajectory in 3D, given the simulation_output and the rocket

	Parameters

	
	simulation_output (pandas array) – Simulation output from a Rocket.run() method. Should contain the following data:

	rocket (trajectory.Rocket object) – The rocket object that was used to produce the simulation data. Is needed to calculate coordinate system changes.

	
campyros.plot.plot_mass(simulation_output, rocket)

	Plots the following:
- Total mass against time
- Moments of inertia against time
- Angles of attack against time

	Parameters

	
	simulation_output (pandas array) – Simulation output from a Rocket.run() method. Should contain the following data:

	rocket (trajectory.Rocket object) – The rocket object that was used to produce the simulation data. Is needed to calculate coordinate system changes.

	
campyros.plot.plot_thrust(simulation_output, rocket)

	Plots the following:
- Thrust against time
- Jet damping moment against time
- Propellant mass flow rate against time

	Parameters

	
	simulation_output (pandas array) – Simulation output from a Rocket.run() method. Should contain the following data:

	rocket (trajectory.Rocket object) – The rocket object that was used to produce the simulation data. Is needed to calculate coordinate system changes.

	
campyros.plot.plot_ypr(simulation_output, rocket)

	

	
campyros.plot.set_axes_equal_3d(ax)

	Makes the scaling the same on the axes of 3D plot. The in-built functions that come with matplotlib only seem to be able to do this for 2D axes.

	Parameters

	ax (matplotlib.pyplot.axes) – The 3D axis that you want to have equal axis scaling, e.g. could have been created with ax = matplotlib.pyplot.axes(projection=”3d”).

	
campyros.plot.stats_alt(z, t, show_means=False, sigma=3)

	

	
campyros.plot.stats_apogee(apogee_mu, apogee_cov, apogee=Empty DataFrame Columns: [] Index: [], sigma=3, landing_mu=array([], dtype=float64), landing_cov=array([], dtype=float64), landing=Empty DataFrame Columns: [] Index: [])

	

	
campyros.plot.stats_landing(mu, cov, data=Empty DataFrame Columns: [] Index: [], sigma=3)

	

	
campyros.plot.stats_trajectories(x, y, z, apogee_mu=array([], dtype=float64), apogee_cov=array([], dtype=float64), sigma=3, landing_mu=array([], dtype=float64), landing_cov=array([], dtype=float64))

	

campyros.post module

Useful functions for post-processing of the trajectory data, e.g. when imported from a .JSON file.

The trajectory data is usually stored in a minimalistic format, so only contains:
- time
- pos_i
- vel_i
- b2imat
- w_b

So things like the altitude, yaw, pitch, and roll, etc… need to be obtained from only this data.

	
campyros.post.ypr_i(simulation_output)

	Get yaw, pitch and roll data (relative to inertial axes).

simulation_output : pandas DataFrame

	Returns

	
	yaw (list)

	pitch (list)

	roll (list)

campyros.ray_alt module

	
class campyros.ray_alt.remote(f)

	Bases: object

campyros.slosh module

Liquid fuel slosh modelling tools

References

[1] - The Dynamic Behavior of Liquids in Moving Containers, with Applications to Space Vehicle Technology
Hyperlink - https://ntrs.nasa.gov/citations/19670006555

	
class campyros.slosh.CylindricalFuelTank(h, d, rho)

	Bases: object

	
pendulum_analogy()

	

	
spring_analogy()

	

	
w_pendulum()

	

	
w_spring()

	

campyros.statistical module

	
class campyros.statistical.StatisticalModel(run_file)

	Bases: object

Stochastic model for the rocket flight

Notes

Every variable specified has a value and a standard deviation in a list (i.e. [mean,st_dev])
Currenrly only supports aero import from rasaero file.
Wind will currently not vary

	Parameters

	run_file (string) – json file containing config, see stats_settings.json

	
launch_site_vars

	Dictionary of variables for launch site object. Must contain: rail_length, rail_yaw, rail_pitch, alt, longi, lat

	Type

	dict

	
mass_model_vars

	Dictionary of variables for mass model object. Must contain: dry_mass, prop_mass, time_data, length, radius

	Type

	dict

	
aero_file

	Location of RASAero data file

	Type

	string

	
aero_error

	Standard deviaiton for the aero coefficients in format COP, CN and CA

	Type

	dict

	
motor_base

	Unpeterbed motor object

	Type

	MotorObject

	
h

	Default timestep /s, defaults to 0.05 - this doesn’t really do anything

	Type

	float, optional

	
variable_time

	Vary timesteps?, defaults to True

	Type

	bool, optional

	
alt_poll_interval

	Parachute altitude polling interval /s defaults to 1

	Type

	, optional

	
run_date

	Date for forcast data in format YYYYMMDD, defaults to current date

	Type

	string, optional

	
forcast_time

	Forcast run time, must be 00,06,12 or 18, defaults to 00

	Type

	string, optional

	
forcast_plus_time

	Hours forcast forward from forcast time, must be three digits between 000 and 123 (?), defaults to 000

	Type

	string, optional

	
thrust_error

	Standard deviation of thrust magnitude error /%

	Type

	float

	
thrust_alignment

	Standard deviation of thrust alignment vector error

	Type

	float

	
parachute_vars

	Dictionary of variables for parachute object. Must contain: main_s, main_c_d, drogue_s, drogue_c_d, main_alt, attatch_distance

	Type

	dict

	
env_vars

	Multiplied factor for the gravity, pressure, density and speed of sound used in the model,
defaults to {“gravity”:1.0,”pressure”:1.0,”density”:1.0,”speed_of_sound”:1.0}

	Type

	dictionary

	
type_name

	The different types of errors to itterate over later

	Type

	list

	
wind_base

	Unpeterbed wind model

	Type

	wind object

	
run_itteration = <ray_alt.remote object>

	

	
run_model(test_mode=False, debug=False, num_cpus=False)

	Runs the stochastic model

	Parameters

	
	itters (int) – Number of times to run the rocket

	save_loc (string, optional) – Folder to store results, defaults to None (is generated based on date if None)

	Returns

	save location, if not specified is generated so needs to be returned to be known

	Return type

	string

	
campyros.statistical.abs_stdev(value, percentage)

	

	
campyros.statistical.analyse(results_path, itterations, full_results=True, velocity=False)

	Loads stats model results to put them in a more useful form for use, see stats_analysis_example notebook for example use

	Parameters

	
	results_path (string) – Folder containing results

	itterations (int) – Number of runs used for the model

	full_results (bool, optional) – Return the full x,y,z,t for every run of the model

	velocity (bool, optional) – Return velocity analys, defaults to False - currently not implimented

	Returns

	
	if full_results=True –

	numpy array
	landing position mean

	numpy array
	landing position covariant matrix

	numpy array
	apogee position mean

	numpy array
	apogee position covariant matrix

	pandas dataframe
	positions of all apogees (columns x,y,z, row for each run)

	pandas dataframe
	positions of all landings (columns x,y,z, row for each run)

	pandas dataframe
	x position throughout flight (row for each run)

	pandas dataframe
	y position throughout flight (row for each run)

	pandas dataframe
	z position throughout flight (row for each run)

	andas dataframe
	time throughout flight (row for each run)

	else –

	numpy array
	landing position mean

	numpy array
	landing position covariant matrix

	numpy array
	apogee position mean

	numpy array
	apogee position covariant matrix

	
campyros.statistical.variable_name(**variables)

	

campyros.transforms module

	
campyros.transforms.direction_i2l(vector, launch_site, time)

	Converts position in launch frame to position in inertial frame.
.. note:: -Problem in the yaw pitch conversions, unexplained negative sign needed

	Parameters

	
	vector (numpy array) – Vector in the inertial frame [x,y,z] /m/s

	launch_site (LaunchSite object) – Holds the launch site parameters

	time (float) – Time since ignition /s

	Returns

	Vector in the launch frame

	Return type

	numpy array

	
campyros.transforms.direction_l2i(vector, launch_site, time)

	Converts position in launch frame to position in inertial frame.
.. note:: -Problem in the yaw pitch conversions, unexplained negative sign needed

	Parameters

	
	vector (numpy array) – Vector in the launch frame [x,y,z] /m/s

	launch_site (LaunchSite object) – Holds the launch site parameters

	time (float) – Time since ignition /s

	Returns

	Vector in the launch frame

	Return type

	numpy array

	
campyros.transforms.i2airspeed(pos_i, vel_i, launch_site, time)

	Converts velocity in the inertial frame to airspeed (before wind is taken into account) using site launch coordinates

Note

Assumes that the atmosphere moves at the same angular velocity as the Earth. Hence, at a given altitude, v_atmosphere = w_earth x r_i

	Parameters

	
	vel_i (numpy array) – Velocity in the inertial frame [x,y,z] /m/s

	pos_i (numpy array) – Position in the intertial frame [x,y,z] /m

	launch_site (LaunchSite object) – Holds the launch site parameters

	time (float) – Time since ignition /s

	Returns

	Airspeed (assuming no wind), given using launch site coordinates

	Return type

	numpy array

	
campyros.transforms.i2lla(pos_i, time)

	

	
campyros.transforms.lla2i(lat, lon, alt, time)

	

	
campyros.transforms.pos_i2alt(pos_i, time)

	Returns the altitude (height from surface in launch frame) from pos_i

Note

-Uses a spherical Earth model

	Parameters

	pos_i (numpy array) – Position of the rocket in the inertial coordinate system [x,y,z] /m

	Returns

	Altitude /m

	Return type

	float

	
campyros.transforms.pos_i2l(position, launch_site, time)

	Converts position in launch frame to position in inertial frame.
.. note:

-Converting spherical coordinates to Cartesian
-https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/12%3A_Vectors_in_Space/12.7%3A_Cylindrical_and_Spherical_Coordinates#:~:text=To%20convert%20a%20point%20from,y2%2Bz2)

	Parameters

	
	position (numpy array) – Position in the inertial frame [x,y,z] /m

	launch_site (LaunchSite object) – Holds the launch site parameters

	time (float) – Time since ignition /s

	Returns

	Position in the launch frame

	Return type

	numpy array

	
campyros.transforms.pos_l2i(pos_l, launch_site, time)

	Converts position in launch frame to position in inertial frame.
.. note:

-Converting spherical coordinates to Cartesian
-https://math.libretexts.org/Bookshelves/Calculus/Book%3A_Calculus_(OpenStax)/12%3A_Vectors_in_Space/12.7%3A_Cylindrical_and_Spherical_Coordinates#:~:text=To%20convert%20a%20point%20from,y2%2Bz2)

	Parameters

	
	pos_l (numpy array) – Position in the launch site frame [x,y,z] /m

	launch_site (LaunchSite object) – Holds the launch site parameters

	time (float) – Time since ignition /s

	Returns

	Position in the inertial frame

	Return type

	numpy array

	
campyros.transforms.vel_i2l(vel_i, launch_site, time)

	Converts velocity in inertial frame to velocity in launch frame.
.. note:: -v = w x r for a rigid body, where v, w and r are vectors

	Parameters

	
	vel_i (numpy array) – Velocity in the inertial frame [x,y,z] /m/s

	launch_site (LaunchSite object) – Holds the launch site parameters

	time (float) – Time since ignition /s

	Returns

	Velocity in the launch frame

	Return type

	numpy array

	
campyros.transforms.vel_l2i(vel_l, launch_site, time)

	Converts position in launch frame to position in inertial frame.
.. note:: -v = w x r for a rigid body, where v, w and r are vectors

	Parameters

	
	vel_i (numpy array) – Velocity in the launch frame [x,y,z] /m/s

	launch_site (LaunchSite object) – Holds the launch site parameters

	time (float) – Time since ignition /s

	Returns

	Velocity in the inertial frame

	Return type

	numpy array

campyros.wind module

	
class campyros.wind.Wind(datetime='20210428 00:00', default=array([0, 0, 0]), variable=True, cache=False)

	Bases: object

	
get_wind(lat, long, alt, flight_time=0)

	[summary]

	Parameters

	
	lat (float) – latitude

	long (float) – longitude

	alt (float) – altitude

	flight_time (float, optional) – time into flight. Defaults to 0.

	Returns

	returns u and v components of wind

	Return type

	tuple

Module contents

campyros.tests package

Submodules

campyros.tests.test module

Module contents

campyros

 nav.xhtml

 Table of Contents

 		
 CamPyRoS - A 6DOF Rocket Trajectory Simulator

 		
 Need help

 		
 Want to help out?

 		
 License

 		
 Contact

_static/file.png

_static/minus.png

_static/plus.png

